Experimental Overview: Natural Sources

Tyce DeYoung
Department of Physics and Astronomy
Michigan State University

Tau Neutrinos from GeV to EeV 2021 September 28, 2021

Outline

- Production of tau neutrinos in natural sources
- GeV: atmospheric appearance
 - Terrestrial oscillations
 - $-v_{\tau}$ signatures at low energy
- PeV: neutrino telescopes
 - Cosmological oscillations
 - $-v_{\tau}$ signatures at high energy
- EeV: Earth-skimming neutrinos

Natural V_T Sources

- Natural sources produce v_{τ} the same way we do: start by accelerating hadrons (cosmic rays) into a target
 - Target may be local to the source (astrophysical v_{τ}) or here at Earth (atmospheric)
- Natural accelerators provide a very broad beam
 - Access to much greater energies (and baselines) than artificial sources
 - Steeply falling cosmic ray spectrum → trade-off between energy and rate

Neutrino Production

 Wherever and however accelerated, hadrons produce neutrinos via meson decay when they interact with matter or radiation, e.g.:

$$p + p \to \pi^{\pm} + X \qquad p + \gamma \to \Delta^{+} \to \pi^{+} + n$$

$$\pi^{+} \to \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \to e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

- Flavor ratio at production is generically v_e : v_μ : v_τ = 1 : 2 : 0, although this can be modified by local conditions
 - v and v̄ not distinguished by these detectors; I will use them interchangeably
 - Neutrinos are predominantly from pion and kaon decay (also 1 : 2 : 0), although heavier mesons (e.g. D^{\pm} , D^{0} , D_{s} , Λ_{c}) produce a few v_{τ} directly
- · Very small intrinsic tau neutrino flux; appear due to flavor oscillations

- Neutrino flux falls steeply above MeV scale, σ_{vN} increases but only ~linearly with E_v
- Low energy v_{τ} CC cross section suppressed by τ lepton mass effects
 - Production threshold 3.5 GeV, but significant kinematic suppression until at least 100 GeV

Short Baseline Oscillations

- Atmos. flavor ratio rises with E_{ν} to ν_{e} : ν_{μ} : ν_{τ} = 1 : 10 : 0
 - Muons reach ground before decaying, suppressing v_e flux
- For atmospheric v_{τ} , max baseline is only ~13,000 km
 - Essentially two-flavor $v_{\mu} \rightarrow v_{\tau}$ oscillations, first maximum at 25 GeV for longest baseline
- Competition between falling spectrum and rising interaction cross section

• Even at 25 GeV, v_τ CC cross section is only 40% of v_μ CC, due to τ mass effect

Tau Neutrino Signatures: Low Energy

- Hadronic shower at ν_τN interaction vertex
- τ lepton produces a track similar to a muon, then decays in flight

$$\gamma c\tau = \frac{E_{\tau}}{1.777 \text{ GeV}} (87.03 \ \mu\text{m})$$
$$= 49 \ \mu\text{m/GeV}$$

- Tau neutrino event topologies are very similar to ν_μ CC, ν_e CC, and NC events
 - Discriminate based on energy, direction

t lepton track is ≤1 mm long, so displaced vertex is not observable with current detectors

Atmospheric V_T Appearance

- Best current measurements from Super-K, IceCube DeepCore
- Both follow the same basic strategy:
 - Enhance v_τ CC signature as much as possible
 - Rely on distinctive angular and/or energy distribution produced by oscillations to measure v_{τ} appearance above remaining background
- Super-K is better at event selection; IceCube DeepCore leverages higher statistics to use energy as well as direction in measurement
- DUNE will soon provide much higher resolution of low-energy atmospheric neutrinos...reduce/avoid reliance on energy/angle?

Atmospheric Appearance in Super-Kamiokande

Super-K, arXiv:1711.09436

- Step 1: reject v_{μ} and v_{e} CC backgrounds, select "multi-ring" events using neural networks
 - τ→μ events rejected along with v_μ CC
 - τ→e events rejected along with v_e CC
 - τ→X decays often produce more particles than NC events
 - ν_τ purity of ~5% in tau-selected sample

Atmospheric Appearance in Super-Kamiokande

Super-K, arXiv:1711.09436

- Step 1: reject v_μ and v_e CC backgrounds, select "multi-ring" events using neural networks
 - τ→μ events rejected along with v_μ CC
 - τ→e events rejected along with v_e CC
 - τ→X decays often produce more particles than NC events
 - v_{τ} purity of ~5% in tau-selected sample
- Step 2: Inclusive measurement of v_{τ} in 2D space of direction vs. NN score, using known distribution of v_{τ} direction due to oscillations

Atmospheric Appearance in IceCube DeepCore

IceCube, arXiv:1901.05366

- Step 1: separate
 ν_μ CC events,
 everything else is
 "cascade-like"
 - NC and v_e events form a smooth background without oscillation features
 - τ→μ events are combined with v_μ CC

- v_{τ} purity of ~3% in cascade sample
- Step 2: Inclusive measurement of v_{τ} appearance in 3D space of direction vs. energy vs. particle type

Trinity BEACON TAROGE

Long Baseline Oscillations

- Over astrophysical baselines, neutrino flavors are fully mixed
 - Even at 10²⁰ eV, a 10 kpc baseline (roughly the distance from Earth to Galactic center) corresponds to 45 phase rotations of solar mixing
- Regardless of initial composition, neutrinos at Earth are restricted to a small range of flavor ratios
 - By chance, the 1:2:0 initial flavor ratio of π/K decay leads to almost exact 1:1:1 equality at Earth

- Over astrophysical baselines, neutrino flavors are fully mixed
 - Even at 10²⁰ eV, a 10 kpc baseline (roughly the distance from Earth to Galactic center) corresponds to 45 phase rotations of solar mixing
- Regardless of initial composition, neutrinos at Earth are restricted to a small range of flavor ratios
 - By chance, the 1:2:0 initial flavor ratio of π/K decay leads to almost exact 1:1:1 equality at Earth
 - Deviations from the allowed range would be smoking gun evidence for new physics

- Over astrophysical baselines, neutrino flavors are fully mixed
 - Even at 10²⁰ eV, a 10 kpc baseline (roughly the distance from Earth to Galactic center) corresponds to 45 phase rotations of solar mixing
- Regardless of initial composition, neutrinos at Earth are restricted to a small range of flavor ratios
 - By chance, the 1:2:0 initial flavor ratio of π/K decay leads to almost exact 1:1:1 equality at Earth
 - Deviations from the allowed range would be smoking gun evidence for new physics
- v_{τ} are both probes of astrophysical environment, and nearly BG-free

- Neutrino interaction cross section rises approximately linearly with energy
 - Interaction length equals the Earth's column density at ~100 TeV: the Earth becomes opaque to neutrinos
 - Muons and electrons produced in CC interactions deposit energy rapidly in dense matter: neutrinos are absorbed
- Taus decay before losing much energy, even in dense matter, producing a new v_τ: tau neutrino regeneration

- Neutrino interaction cross section rises approximately linearly with energy
 - Interaction length equals the Earth's column density at ~100 TeV: the Earth becomes opaque to neutrinos
 - Muons and electrons produced in CC interactions deposit energy rapidly in dense matter: neutrinos are absorbed
- Taus decay before losing much energy, even in dense matter, producing a new v_τ: tau neutrino regeneration
 - Earth-crossing neutrinos are detected at a few hundred TeV, regardless of original E_V

Neutrinos observable at higher energy only near horizon

Tau Neutrino Signatures: High Energy

- Hadronic shower at ν_τN interaction vertex
- τ lepton produces a track similar to a muon, then decays in flight

$$\gamma c\tau = \frac{E_{\tau}}{1.777 \text{ GeV}} (87.03 \ \mu\text{m})$$
$$= 49 \text{ m/PeV}$$

- τ track is dimmer than a muon of equal energy – but not dim
- Hadronic and electromagnetic showers not distinguished

kink becomes undetectable at high E. track brightening theoretically observable, but requires considerable luck

V_T in Very Large Volume Neutrino Telescopes

Learned & Pakvasa, arXiv:hep-ph/9405296,

Beacom, Bell, Hooper, Pakvasa, & Weiler, arXiv:hep-ph/0307025

- Classic signature in neutrino telescopes is a "double bang"
 - In reality, the bangs aren't cleanly separated below several PeV
 - Most tau events will be a "double pulse" – the two bangs are separated in time but not in space
- At higher energy, the τ track becomes longer than the detector
 - Tau leptons can be ID'd by decayin-flight of very energetic tracks ("lollipops") – but rates very low

First Detection of Astrophysical V_T

IceCube, arXiv:2011.03561

 More and larger neutrino telescopes required for more events (KM3NeT, Baikal-GVD, IceCube Gen2, P-ONE)

TAROGE

- At EeV scales, σ_{vN} is large enough for neutrinos to interact in relatively short lengths of matter (or even in the atmosphere)
 - The τ lepton may carry enough energy to emerge before decaying in flight
- Similar to ultrahigh energy cosmic rays (UHECR), the air shower from the τ decay may be observed via:
 - Nitrogen fluorescence or charged particles
 - Cherenkov emission
 - Radio emission
- Geometry is the challenge: the signature of v_{τ} is an *up-going* air shower
 - (Other neutrino flavors can be detected in searches for young, highly inclined showers, but v_{τ} can't be identified)

Earth-Skimming Neutrinos: Ground-Based

- First searches conducted by Auger,
 TA using particles + fluorescence,
 but no neutrinos detected so far
- Follow-up proposals for dedicated experiments at mountainous sites, now at prototype stage
 - Charged particles in air showers coherently emit radio waves as well as Cherenkov light
 - Both types of emission are beamed, detectable at many 10's of km
 - Radio detectors (GRAND, BEACON, TAROGE, ARIANNA-HCR) have higher duty cycle than Cherenkov detectors (TRINITY), but need to reject background from reflected CR showers (reversed phase)
- Tau neutrinos also detectable by Antarctic radio neutrino detectors (ARA, ARIANNA)

Earth-Skimming Neutrinos: ANITA Anomaly

ANITA arXiv:1603.05218, 1803.05088

- ANITA: balloon-borne radio detector circling Antarctica
 - Ice is RF-transparent, ANITA sensitive to showers within or emerging from the ice cap
- Two anomalous events, inconsistent with reflected cosmic ray showers

- But steeply up-going (27°, 36° below horizon), not Earth-skimming!
 - Chord lengths through Earth of as many as 18 SM neutrino interaction lengths
 - Both events ~6 x 10¹⁷ eV, orders of magnitude too high for regenerated v_τ
 - Currently no generally-accepted explanation for these events

Earth-Skimming Neutrinos: Balloons and Space

- Two proposed missions for UHE ν_τ detection
- PUEO: balloon-borne (arXiv:2010.02892)
 - Successor to ANITA, with improved antennae and phased-array trigger for reduced energy threshold
 - Sensitive to Earth-skimming v_{τ} , follow up on ANITA anomaly
- POEMMA: space-borne (arXiv:2012.07945)
 - Two spacecraft sensitive to both fluorescence and Cherenkov emission
 - Detect both UHECR and Earthskimming v_τ in limb observation mode

Summary

- Natural sources of neutrinos offer access energies and baselines far beyond those achievable with accelerators
- Flavor oscillations lead to significant fluxes of tau neutrinos at several energy scales
 - Atmospheric v_τ from a few GeV to the 100 GeV scale
 - Astrophysical v_τ, identifiable above a few 100 TeV, but at much lower rates
 - Measurements of v_{τ} rates enable searches for new physics, as well as probing extreme astrophysical environments
- A range of techniques for detection at different energy scales
 - Improved detectors offer increased prospects for detection of both atmospheric and astrophysical v_{τ}